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ABSTRACT : A general method for the analysis of pre-
chaotic and chaotic behaviours in lumped-distributed
circuits has been developed. Examples of practical
microwave oscillators, namely GUNN and IMPATT
oscillators were designed. The simulation and measurement
results showed that these oscillators possess regions of
periodic, quasi-periodic, and chaotic spectra. The method
could be used by circuit designers to design chaos free
oscillators.

L. INTRODUCTION

A significant number of microwave lumped-distributed
nonlinear networks possess highly nonlinear elements.
These networks are also of very high order because of the
large number of elements required to simulate devices and
circuits at microwave frequencies. These two properties
make microwave networks very prone to chaotic behaviour.
Chaotic behaviour is more likely to take place in nonlinear
microwave circuits containing negative resistance diodes as
active elements and coaxial transmission lines, strip lines,
cavity resonators ,or tuning varactors as passive elements.
In circuits containing waveguides, the chaotic behaviour is
less probable due to the waveguide low frequency cut off
property. An analysis procedure for lumped-distributed
circuits has been developed to study the chaotic phenomena
of microwave circuits [1]

Two examples of microwave oscillators containing single
and muiti-nonlinear elements (the GUNN and IMPATT
diodes) were designed by using the proposed procedure.
Different bifurcation parameters were considered, namely
the slope of the nonlinear function, the delay of a
transmission line, and the bias current of the oscillator
circuit. Different routes to chaos were displayed, namely
quasiperiodicity, intermittency, noisy periodicity, and
period doubling,.

II. ANALYSIS PROCEDURE

The state and output equations describing a general
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nonlinear lumped-distributed network [2] are given by,
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where x,x, are the lumped and distributed state vectors,
F, s the vector of nonlinear functions,
u,y are the input and output vectors ,

T; is the delay of the ith transmission line,

A, B, C, D are real matrices.

The conditions at the equilibrium points (D.C. solutions)
are given by,
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Applying conditions (3) into (1), the following matrix
equation for the equilibria can be obtained,
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where I is a unit matrix of order m.

The solution of (4) gives the coordinates of / equilibrium
points,
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where Xq,X,; are the coordinates of the lumped and
distributed state vectors at the ith equilibrium point.
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For circuits containing a single nonlinear element, the
system stability criteria of the linear system and the graph
of the nonlinear element can be combined in the i-v plane
of the nonlinearity. Thus the existence of equilibria, their
positions, stability can be obtained. In this case one can
identify two types of oscillations, (-«,B) and multilevel
oscillations [3]-[4]. The stability study is also done locally
at each equilibrium point for circuits containing more than
one nonlinear element. Movement of the equilibria, their
stability properties as a function of a bifurcation parameter,
birth of new equilibria, and points of changing the local
stability are required information to judge the structural
stability of the system.

III. GUNN DIODE OSCILLATOR

The Gunn diode oscillator shown in Fig.(1) is an example
of a lumped-distributed circuit containing one nonlinear
element.

1. Stability Criteria of the GUNN Oscillator

With the choice of the relative delay, T=T,/T;, to be the
bifurcation parameter, the stability of the linearized system
can be constructed in the slope-delay plane and in the (i-v)
plane of the diode characteristics. Applying the multilevel
oscillation theorem [3]-[4] the stability criteria of two
qualitatively different regions can be identified :

i. Stable Region independent of delay : This region is
given by, m<m,,; ,m>m,, asindicated in Fig(2.a).

ii. Region of Possible oscillating Solutions: This region is
given by, (m,,, <m<m,, ), (T<T<T,) where T,
T, are the  minimum and maximum relative delay
values for a particular value of m=m,, (see Fig.(2.a)).

The absolute stability sector in the (i-v) plane of the
nonlinear function corresponding to the region between the
points T, and T, in the slope-delay plane is shown in
Fig.(2.b) for a constant value of the relative delay T/T,.
For a possible oscillatory solution, m, must lie in the range,
m, < m, < m, It is clear from Fig.(2.a) that the boundaries
m, and m; are moving as the relative delay T,/T, varies.
Oscillatory solutions were found with m= m,, R, =-0.569,
T,=26.30 ps, T,=53.2 ps, and T; varied as a bifurcation
parameter. Within this oscillatory region three regions
were found namely the undamped oscillation region, the
noisy periodic region, and the chaotic region. The
properties of the eigenvalues within each of these regions
were studied to determine whether these regions can be
predicted from the eigenvalues. The equilibrium point at
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the origin is unstable, while the other symmetric non-zero
equilibria have different stability properties in each of the
following sub-regions :

-In the undamped oscillation region, the eigenvalues of
the non-zero equilibria are stable with relatively large
negative real parts compared to the stable periodic region.

-In the noisy periodic region, the non-zero equilibria
are non-hyperbolic (two eigenvalues have zero real parts).

-In the region assigned chaotic, the non-zero equilibria
are non-stable ( some eigenvalues have negative real
parts and some have positive real parts).

-In the region of stable periodic solutions ( periodic
solutions with countable periods ), the non-zero
equilibria are stable with some of the eigenvalues
having very small negative real parts.

2. Simulation Results of the Gunn oscillator

The circuit was simulated using our time domain program
[5] in each of the above mentioned regions by varying the
value of the delay of the tuning transmission line, T,. For
T1=26.36 ps, T,=53.2 ps, and T;=18.8 ps, a harmonic
solution in the undamped oscillation region is obtained. In
this region we have harmonic oscillations, the amplitude
and frequency of which are controlled by the delay T,. The
simulations revealed that a reverse bifurcation of bands
(noisy periodic) transition associated with period three and
period doubling takes place. In the other region assigned
chaotic , the intermittent period four solution for which the
bursts distribution becomes random at T,=15.31 ps was
observed. At T;=14.4 ps a harmonic solution with the
fundamental frequency was again observed. It is important
to note that the harmonic solution obtained in the stable
periodic region is less in amplitude than the one obtained
in the undamped region. This clarifies the importance of
the specified regions of performance in Fig.(2.a) to the
designers.

3. Practical Resuits of the Gunn Oscillator

The measured spectrum of the oscillator indicated the basic
design frequency f, and a period doubling state for which
the two frequency components appear at f, and f,=f /2 .
The increase of the bifurcation parameter (the delay T,)
resulted in new frequency components incommensurate
with the basic frequency. Further increase of the
bifurcation parameter led to the breaking of the quasi-
periodicity and mode locking followed by spectral
broadening. The quasiperiodic and chaotic spectra are
shown in Fig.(3).

IV. IMPATT DIODE OSCILLATOR

The IMPATT diode model proposed by Ganett and Chua



{6] was implemented in the analysis procedure, The
complete circuit for the oscillator is shown in Fig.(4).

1. Simulation Results of IMPATT osciliator

The circuit was simulated using a time domain simulator
[5] in which the nonlinear elements are replaced by linear
elements and nonlinear controlled sources. The simulation
of the circuit resulted in the following modes of behaviour:

i. Normal Operation Mode: For the value of the bias
current I =63 mA,and the delay ratio 0.62<T,/T;<0.65,
the simulation showed a harmonic solution with the
fundamental frequency, £,=5.18 GHz, which is in good
agreement with the design values, f,=5 Ghz.

ii. Period Doubling Operation Mode: Keeping the value of
the bias current at 1,=63 mA, and increasing the delay
ratio, period doubling followed by period four solutions
are observed for delay ratios of 0.655 and 0.662,
respectively.

iii.Quasiperiodic and Chaotic Operation Modes: In this
case the bias current was increased to 70 mA, and the
delay ratio to be 0.662, a quasi-periodic spectrum was
obtained. The spectrum is composed of two independent
components f and f, and some of their integer
combinations . Further increase of the delay ratio resulted
in a chaotic solution.

3. Practical Results of IMPATT diode oscillator

The spectrum of the oscillator in the normal mode is
shown in Fig.(5.a). The increase of the tuning length
resulted in a small shift in the frequency of the
fundamental and three subharmonics f /4, f/2, 3f /4 which
is a period four solution. Increasing the value of the bias
current to 70 mA resulted in a quasi-periodic spectrum
with two independent frequencies. Further increase in the
relative delay resulted in a broad band noise-like spectrum
as shown in Fig.(5.b). Agreements between simulations and
practice have been achieved.

VI. CONCLUSIONS

The study of the chaotic behaviour of two widely used
lumped-distributed microwave oscillators, namely the
GUNN and IMPATT oscillators, has shown that many
effects, previously attributed to noise, parametric
instability, or power supply oscillations are in fact
controllable and can be avoided. Regions of chaos free
oscillations, noisy periodic oscillations, quasi-periodic
oscillations, and chaotic oscillations are predicted and
verified by measurements. It is of major importance to find

regions of different modes of behaviour of such devices to
help the designer.
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Fig.(1) The GUNN diode oscillator circuit.
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Fig.(2.a) Absolute stability criteria of the GUNN oscillator in the
slope-delay plane T,=26.36 ps, T,=53.2 ps.

Fig.(2.b) Absolute stability criteria in the (i-v) plane of the
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Fig.(4) The IMPATT diode oscillator circuit.
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Fig.(3) Measured spectrum of the GUNN diode in the
nonperiodic mode (a) quasiperoidic (b) Chaotic.
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Fig.(5) Measured spectrum of the IMPATT oscillator
(a) Harmonic (b) Chaotic.




