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ABSTRACT : A general method for the analysis of pre-

chaotic and chaotic behaviors in lumped-distributed

circuits has been developed. Examples of practical

microwave oscillators, namely GUNN and IMPATT

oscillators were &signed. The simulation and measurement
results ~owed that these oscillators possess regions of
periodic, quasi-periodic, and chaotic spectra. The method
could be used by circuit designers to design chaos free
oscillators.

I. INTRODUCTION

A significant number of microwave lumped-distributed

nonlinear networks possess highly nonlinear elements.

These networks are also of very high order because of the

large number of elements required to simulate devices and
circuits at microwave frequencies. These two properties

make microwave networks very prone to chaotic behaviour.

Chaotic behaviour is more likely to take place in nonlinear

microwave circuits containing negative resistance diodes as
active elements and maxisl transmission lines, strip lines,

cavity resonators ,or tuning varactors as passive elements.

In circuits containing waveguides, the chaotic behaviour is

less probable due to the waveguide low frequency cut off

property. Art analysis procedure for lumped-distributed
circuits has &en developed to study the chaotic phenomena
of microwave circuits [1]

Two examples of microwave oscillators containing sirigle

and multi-nonlinear elements (the GUNN and IMPAIT

diodes) were designed by using the proposed procedure.
Different biihrcation parameters were considered, namely

the slope of the nonlinear function, the delay of a
transmission line, and the bias current of the oscillator

circuit. Different routes to chaos were displayed, namely

quasiperiodicity, interrnittency, noisy periodicity, and

period doubling.

IL ANALYSIS PROCEDURE

The state and output equations describing a general

nonlinear lumped-distributed network [2] are given by,

y(t)

[1

= [c, ~,] “(’) Du(t)+ D.~”(x,&z,u) (2)

Xz(t)

where Xl,xz

Fn

U,y
Ti
A, B, C, D are real matrices.

are the lumped and distributed state vectors,

is the vector of nonlinear functions,

are the input and output vectors ,
is the delay of the ith transmission line,

The conditions at the equilibrium points (D.C. solutions)

are given by,

i,(f) = o , q(t+1’) = xl(t)
(3)

Applying conditions (3) into (l), the following matrix
equation for the equilibria can be obtained,

E

I A, “

, A,-IW D1
= -Bu - Bn F“(X*,X2,U) (4)

2

where ~

The solutio

point&

is a unit matrix of order m.

of (4) gives the coordinates of 1 equilibrium

‘Q{ = h ‘2QI
i. 1,2,...,1

(5)

where xla,xz~i are the coordinates of the lumped and
distributed state vectors at the ith equilibrium point.
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For circuits containing a single nonlinear element, the

system stability criteria of the linear system and the graph
of the nonlinear element can be combined in the i-v plane

of the nonlinearity. Thus the existence of equilibria, their
positions, stability can be obtained. In this case one can

identify two types of oscillations, (-u, ~) and multilevel

oscillations [3]-[4]. The stability study is also done locally

at each equilibrium point for circuits containing more than

one nonlinear element. Movement of the equilibria, their

stabiLity properties as a function of a bifurcation parameter,
birth of new equilibria, and points of changing the local
stability are required information to judge the structural

stability of the system.

III. GUNN DIODE OSCILLATOR

The Gunn diode oscillator shown in Fig.(l) is an example

of a lumped-distributed circuit containing one nonlinear

element.

L Stability Criteria of the GUNN Oscillator

With the choice of the relative delay, T=Tln~, to be the

bifurcation parameter, the stability of the linearized system

can be constructed in the slope-delay plane and in the (i-v)
plane of the diode characteristics. Applying the multilevel

oscillation theorem [3]-[4] the stability criteria of two

qualitatively different regions can be identified :

i. Stable l?egion independent of delay : This region is

given by, m < ml.jn , m > ml.,. as indicated in Fig(2.a).

ii. Region of Possible oscillating Solutions: This region is
given by, ( ml~,~ m < mkin ), (T,< T < Tb ) ,where T,,

T, are the minimum and maximum relative delay

values for a particular value of m=mO, (see Fig.(2.a)).

The absolute stability sector in the (i-v) plane of the

nonlinear function corresponding to the region between the

points T. and T~ in the slope-delay plane is shown in

Flg.(2.b) for a constant value of the relative delay T1~3.

For a possible oscillatory solution, ~ must lie in the range,
mU < mO < ml. It is clear from Fig, (2,a) that the boundaries
~ and ml are moving as the relative delay Tl~~ varies.
Oscillatory solutions were found with m= mO, R1 =-0.569,
Tl=26.36 ps, TZ=53.2 ps, and T3 varied as a bifurcation

parameter. Within this oscillatory region three regions

were found namely the undamped oscillation region, the
noisy periodic re~on, and the chaotic region. The

properties of the eigenvalues within each of these regions
were studied to determine whether these regions can be

predicted from the eigenvalues. The equilibrium point at

the origin is unstable, while the other symmetric non-zero

equilibria have different stability properties in each of the
following sub-regions :
-In the undamped oscillation region, the eigenvalues of
the non-zero equilibria are stable with relatively large
negative real parts compared to the stable periodic region.

-In the noisy periodic ‘region, the non-zero equilibria

are non-hyperbolic (two eigenvalues have zero real parts).

-In the region assigned chaotic, the non-zero equilibria

are non-stable ( some eigenvalues have negative real

parts and some have positive real parts).
-In the region of stabIe periodic solutions ( periodic

solutions with countable periods ), the non-zero
equilibria are stable with some of the eigenvrdues
having very small negative real parts.

2. Simulation Results of the Gunn oscillator

The circuit was simulated using our time domain program

[5] in each of the above mentioned regions by varying the
value of the delay of the tuning transmission line, T~. For

T1=26.36 ps, T2=53.2 ps, and T~=18.8 ps, a harmonic

solution in the undamped oscillation region is obtained. In
this region we have harmonic oscillations, the amplitude
and fi-equency of which are controlled by the delay T> The

simulations revealed that a reverse bifurcation of bands

(noisy periodic) transition associated with period three and

period doubling takes place. In the other region assigned
chaotic , the intermittent period four solution for which the

bursts distribution becomes random at T~=15.31 ps was

observed. At T~=14.4 ps a harmonic solution with the

fimdamental frequency was agti observed. It is important

to note that the harmonic solution obtained in the stable

periodic region is less in amplitude than the one obtained
in the undamped region. This clarifies the importance of

the specifkd regions of performance in Fig.(2.a) to the
designers.

3. Practical Results of the Gunn Oscillator

The measured spectrum of the oscillator indicated the basic
design frequency fO and a period doubling state for which

the two frequency components appear at f. and f,=fJ2 .
The increase of the bifurcation parameter (the delay TJ

resulted in new frequency components incommensurate

with the basic frequency. Further increase of the

bifurcation parameter led to the breaking of the quasi-

periodicity and mode locking followed by spectral
broadening.The quasipenodic and chaotic spectra are
shown in Fig.(3).

IV. IMPATT DIODE OSCILLATOR

The IMPAIT diode model proposed by Ganett and Chua
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[6] was implemented in the anaiysis procedure. The

complete circuit for the oscillator is shown in Fig.(4).

1. Simulation Results of IMPATT oscillator

The circuit was simulated using a time domain simulator

[5] in which the nonlinear elements are replaced by linear

elements and nonlinear controlled sources. The simulation

of the circuit resulted in the following modes of behaviour:

i. Normal Operation Mode: For the value of the bias

current 1.=63 mA,and the delay ratio 0.62~fl~<0.65,
the simulation showed a harmonic solution with the
fundamental frequency, fO=5.18 GHz, which is in good

agreement with the design values, fO=5 Ghz.

ii. Period Doubling Operation Mode: Keeping the value of

the bias current at 1.=63 mA, and increasing the delay

ratio, period doubling followed by period four solutions
are observed for delay ratios of 0.655 and 0.662,
respectively.

iii. Quasiperiodic and Chaotic Operation Modes In this

case the bias current was increased to 70 mA, and the

delay ratio to be 0.662, a quasi-periodic spectrum was

obtained. The spectrum is composed of two independent

components fO and f, and some of their integer

combinations . Further increase of the delay ratio resulted

in a chaotic solution.

3. Practical Results of IMPATT diode oscillator

The spectrum of the oscillator in the normal mode is

shown in Fig.(5.a). The increase of the tuning length
resulted in a small shift in the frequency of the

fundamental and three subharmonic fJ4, fJ2, 3fJ4 which

is a period four solution. Increasing the value of the bias

current to 70 mA resulted in a quasi-periodic spectrum

with two independent frequencies. Further increase in the

relative delay resulted in a broad band noise-like spectrum

as shown in Flg,(5.b). Agreements between simulations and
practice have been achieved.

VI. CONCLUSIONS

The study of the chaotic behaviour of two widely used
lumped-distributed microwave oscillators, namely the

GUNN and IMPA’IT oscillators, has shown that many

effects, previously attributed to noise, parametric

instability, or power supply oscillations are in fact

controllable and can be avoided. Regions of chaos free

oscillations, noisy periodic oscillations. quasi-periodic
oscillations, and chaotic
verified by measurements,

oscillations are predicted and

It is of major importance to fmd

regions of different modes of behaviour of such devices to
help the designer.
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Fig,(l) The GUNN diode oscillator circuit.
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Fig.(2.a) Absolute stability criteria of the GUNN osciffator in the

slope-delay plane T1=XL36 ps, T~53.2 ps.
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Fig.(2.b) Absolute stabiIity criteria in the (i-v) plane of tie
nonfinear characteristics of the GUNN diode.
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Fig.(4) The IMPATT diode osciffator circuit.
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Fig.(5) Measured spectrum of the IMPA’lT oscillator

(a) Harmonic (b) Chaotic.

Fig.(3) Measured spectrum of the GUNN diode in tbe
nonperiodic mode (a) quasiperoidic (b) Chaotic.


